

Soutenance de thèse

Mali ZHAO

Institut des Sciences Moléculaires d'Orsay (ISMO), Orsay

"Electronic Properties of Graphene Functionalized with 2D Molecular Assemblies"

Graphene has extraordinary electronic properties because of its zero band gap and linear band structure. However, the lack of a band gap hinders the implementation of graphene in electronic devices. Tuning the graphene band gap by organic molecular building blocks is one of the promising ways to obtain a precise control of the graphene charge carriers.

In this thesis, graphene was prepared by sublimating Si atoms from SiC substrate. Three organic molecules which carry different spin information, Ni- phthalocyanine (NiPc), Pt- tetraphenylporphyrin (PtTPP(CO₂Me)₄) and Fe- tetraphenylporphyrin (Fe(TPP)CI) were used to functionalize graphene. The self- assembly and electronic properties of organic molecules on graphene were studied by Scanning Tunneling Microscopy (STM) and Density Functional Theory (DFT) calculation.

All three molecules form well- ordered square lattice molecular networks on graphene via the van der Waals force, which give rise to the capacitive molecule/ graphene interfaces. The electronic coupling between FeTPP molecules and graphene is stronger than that between NiPc or PtTPP molecules and graphene. This study would shed a dim light on the application of organometallic molecules/graphene interface in spintronic devices.

<u>Vendredi 13 janvier 2017 à 14h00</u> Bât 210 – Amphi 1 (2^{ème} étage) Université Paris-Sud, 91405 Orsay Cedex

La soutenance sera suivie d'un pot auquel vous êtes chaleureusement conviés.