ISMO

Institut des Sciences Moléculaires d'Orsay


Partenaires

CNRS UPS




vendredi 19 avril


Mise à jour
jeudi 11 avril


Accueil > Séminaires > Année 2022 > Séminaire de Anna Rosławska (29 mars)

Séminaire de Anna Rosławska (29 mars)

Institut de Physique et Chimie des Matériaux de Strasbourg | IPCMS

par Martrenchard-Barra Séverine - 5 décembre 2021 (modifié le 22 mars 2022)


Le séminaire sera diffusé en visioconférence. Les personnes extérieures au laboratoire qui souhaitent y assister sont invitées à envoyer un mail à l’adresse

seminaires.ismo@universite-paris-saclay.fr

Elles recevront le lien pour se connecter en retour.

Plasmon-exciton coupling and resonant energy transfer probed at the sub-molecular level

Light-matter interaction plays a crucial role in the quantum properties of light emission from single molecules, and in electron-to-photon and photon-to-electron energy conversions. Such mechanisms are usually probed using optical methods, which are, however, spatially limited by diffraction to a few hundred nanometers. On the other hand, scanning tunneling microscopy (STM) routinely reaches picometre spatial scale. Recent works have shown that the tunneling current of an STM can be used to excite the intrinsic luminescence of individual molecules enabling light-matter interaction studies with unprecedented resolution. In the talk, I will first discuss how the STM-induced luminescence allows us to map the optical properties of single molecules with nearly atomic precision thanks to the coupling between excitons and local electromagnetic fields [1]. With this approach, we are also able to mimic structures employed by photosynthetic systems and study sub-nm details of the energy transfer process using molecules as ancillary, passive or blocking elements to promote and direct resonant energy transfer between distant donor and acceptor units [2]. Such control over optical properties at the molecular level is possible using only this hyper-resolution optical approach, which does not suffer from ensemble averaging.

[1] Rosławska, A. ; Neuman, T. ; Doppagne, B. ; Borisov. A. G. ; Romeo, M. ; Scheurer, F. ; Aizpurua, J. ; Schull, G., Phys. Rev. X, in press (arXiv:2107.01072).
[2] Cao, S. ; Rosławska, A. ; Doppagne, B. ; Romeo, M ; Feron, M. ; Cherioux, F. ; Bulou, H ; Scheurer, F. ; Schull, G., Nat. Chem., 13, 2021.