Accueil >
Équipes scientifiques >
Systèmes Moléculaires, Astrophysique et Environnement (SYSTEMAE) >
Publications >
2024
2024
Peer-reviewed Publications |
Attal, L., Calvo, F., Falvo, C., & Parneix, P. (2024). Coherent state switching using vibrational polaritons in an asymmetric double-well potential. Phys. Chem. Chem. Phys., 2622(9), 753477–754477.
Résumé: The quantum dynamics of vibrational polaritonic states arising from the interaction of a bistable molecule with the quantized mode of a Fabry–Perot microcavity is investigated using a generic asymmetric double-well potential as a simplified one-dimensional model of a reactive molecule. After discussing the role of the light–matter coupling strength in the emergence of avoided crossings between polaritonic states, we investigate the possibility of using these crossings to trigger a dynamical switching of these states from one potential well to the other. Two schemes are proposed to achieve this coherent state switching, either by preparing the molecule in an appropriate vibrational excited state before inserting it into the cavity, or by applying a short laser pulse inside the cavity to obtain a coherent superposition of polaritonic states. The respective influences of dipole moment amplitude and potential asymmetry on the coherent switching process are also discussed.
|
|
Attal, L., Falvo, C., Calvo, F., & Parneix, P. (2024). Modeling the dynamics of quantum systems coupled to large-dimensional baths using effective energy states. J. Chem. Phys., 16011(4), 04410700.
Résumé: The quantum dynamics of a low-dimensional system in contact with a large but finite harmonic bath is theoretically investigated by coarse-graining the bath into a reduced set of effective energy states. In this model, the couplings between the system and the bath are obtained from statistically averaging over the discrete, degenerate effective states. Our model is aimed at intermediate bath sizes in which non-Markovian processes and energy transfer between the bath and the main system are important. The method is applied to a model system of a Morse oscillator coupled to 40 harmonic modes. The results are found to be in excellent agreement with the direct quantum dynamics simulations presented in the work of Bouakline et al. [J. Phys. Chem. A 116, 11118–11127 (2012)], but at a much lower computational cost. Extension to larger baths is discussed in comparison to the time-convolutionless method. We also extend this study to the case of a microcanonical bath with finite initial internal energies. The computational efficiency and convergence properties of the effective bath states model with respect to relevant parameters are also discussed.
|
|
Chahbazian, R., Martin-Drumel, M. - A., & Pirali, O. (2024). High-Resolution Spectroscopic Investigation of the CH2CHO Radical in the Sub-Millimeter Region. The Journal of Physical Chemistry A, 12811(2), 37033–37733.
Résumé: In this work, the pure rotational spectrum of the vinoxy radical (CH2CHO) has been studied at millimeter and sub-millimeter wavelengths (110–860 GHz). CH2CHO was produced by H-abstraction from acetaldehyde (CH3CHO) using atomic fluorine in a double-pass absorption cell at room temperature. A Zeeman-modulation spectrometer, in which an external magnetic field generated inside the absorption cell is amplitude-modulated, was used to record the pure rotational transitions of the radical. The recorded spectra are devoid of signals from closed-shell species, allowing for relatively fast acquisitions over wide spectral windows. Transitions involving values of the rotational quantum numbers N″ and Ka″ up to 41 and 18, respectively, were measured and combined with all available high-resolution literature data (both pure rotation and ground-state combination differences from ro-vibration) to greatly improve the modeling of the CH2CHO spectrum. The combined experimental line list is fit using a semirigid rotor Hamiltonian, and the results are compared to quantum chemical calculations. This laboratory study provides the spectroscopic information needed to search for CH2CHO in various interstellar environments, from cold (e.g., typically 10 K for dense molecular clouds) to warm (e.g., ∼200 K for hot corinos) objects.
|
|